
THE EFFECTS OF CLIMATIC VARIABILITY ON US IRRIGATION
ADOPTION

DONALD H. NEGRI1, NOEL R. GOLLEHON2 and MARCEL P. AILLERY3

1Department of Economics, Willamette University, 900 State Street, Salem, Oregon 97301, U.S.A.
E-mail: dnegri@willamette.edu

2Economic Research Service, 1800 M Street NW, Room 4047, Washington, DC 20036-5831, U.S.A
3Economic Research Service, 1800 M Street NW, Room 4011, Washington, DC 20036-5831, U.S.A

Abstract. This paper contributes to the literature underscoring the importance of climatic variance
by developing a framework for incorporating the means and tails of the distributions of rainfall and
temperature into empirical models of agricultural production. The methodology is applied to esti-
mate the impact of climate change on the discrete choice decision to adopt irrigation since it is an
important adaptation to climate change. We develop a discrete choice model for the decision to in-
stall irrigation capacity that captures the effects of both climate means and extremes. Climatic means
and frequencies of climatic events in the upper tails of the temperature and precipitation distribu-
tions are used to estimate the parameters of a normal distribution for temperature and a Weibull
distribution for precipitation. Using estimates from a probit model, we examine the independent
effects of changing climatic mean and variance on the probability of adopting irrigation. Increas-
ing the mean temperature, holding variance constant, shifts the entire distribution toward warmer
temperatures – increasing the frequency of extreme temperatures. For precipitation, the specifica-
tion captures the separate effects of mean rainfall, frequency of rainfall, and frequency of extreme
events. The results show that the tails of the temperature and precipitation distributions, not the
means, are the dominant climatic determinants in irrigation adoption. The results also show that water
availability, soil characteristics, farm size and operator demographics are important determinants of
irrigation.

1. Introduction

The prospect of global warming over the next century has prompted numerous
studies of the impacts of warmer climate on US agriculture. The consensus in the
literature is that the adverse impacts of global warming on aggregate US agricul-
ture are likely to be small, although regional impacts may be significant (see Kaiser
Crosson, 1995; and Lewandrowski and Schimmelpfennig, 1999, for surveys). In-
deed, several studies (e.g., Mendelsohn, et al., 1994) predict a net economic benefit.
Until recently, however, many of these studies shared a common deficiency: they
did not adequately account for changes in the frequency or magnitude of extreme
climatic events such as excessive heat or cold, torrential rain, or prolonged drought.
The methods in these studies implicitly or explicitly assumed that the first moment
of the climate probability distributions would capture the agricultural impact of cli-
mate change. Extreme events, which can be summarized by higher order moments
of the distribution, were largely ignored.
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Global climate change will almost certainly affect more than the first moments of
the precipitation and temperature distributions. Even holding variance constant, an
increase in mean temperature will increase the frequency and severity of hot days as
the entire distribution shifts toward higher temperatures. Similarly, climate change
will alter the frequency, intensity, and duration of precipitation events. Statistics
which summarize only the first moment of these distributions cannot adequately
capture the impact of changes in the probability of events in the tails of the distribu-
tions because the relationship between means and extremes tends to be nonlinear.
Moreover, relatively small changes in variance can lead to a disproportionately
large increase in the frequency and severity of extreme events because extremes
of temperature and precipitation are more sensitive to changes in variance than
changes in the mean (Katz and Brown, 1992).

Several recent studies explicitly address the impact of climate variability on
agriculture and establish that climate variability is a significant determinant of agri-
cultural land value (Mendelsohn et al., 1999), yields (Mearns et al., 1996), profits
(Dixon and Segerson, 1999), and consumer and producer welfare (Dalton, 1997).1

This paper contributes to the literature underscoring the importance of climate
variance by developing a framework for incorporating climatic variance and ex-
treme events into an empirical model of irrigation adoption. Using readily available
climatic data, we estimate a probit model that captures the effects of both climate
means and extremes on the decision to adopt irrigation. Information about pro-
ducer adaptation to the distribution of temperature and precipitation, including the
risk of extreme events, is embodied in prevailing agricultural practices. An empir-
ical model based on a geographic cross-section that includes variables that proxy
for extreme events can estimate on-farm adaptations to changing climatic condi-
tions. The methodology is applied to the decision to adopt irrigation; however, it
can be applied more generally to empirically analyze other agricultural impacts of
climate change.

The relationship between agricultural production and the biophysical conditions
within which it occurs is extremely complex. Indeed, many dimensions of climate
affect agriculture, with complex interactions among climatic variables themselves
and across other biophysical conditions such as soil structure. This research, while
not completely unraveling these complex relationships, establishes, separate and
distinct from measures of climate mean, the importance of climate variance and
extreme events in the decision to adopt irrigation.

Section 2 develops a discrete choice model of agricultural production that per-
mits input and output substitution. In this framework, the probability of adopting
irrigation is estimated as a function of input and output prices, farm size, and a
vector of exogenous physical conditions including climate. Section 3 describes the
farm-level, geo-referenced data and independent variables developed to estimate a
probit model of the decision to adopt irrigation. The explanatory variables include
measures of the tails of the temperature and precipitation distributions and inter-
action terms among selected biophysical conditions. The parameter estimates are
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reported and discussed in Section 4. Section 5 parameterizes the temperature and
precipitation distributions and, using estimates from the probit model, simulates the
independent effects of climatic mean and variance on the probability of adopting
irrigation. Section 6 summarizes our results and suggests productive avenues for
future research.

2. Model

A multi-output production model can be used to explore the complex influences of
climate on agricultural production decisions. The formal model is based on a multi-
output production model with land as a fixed, allocatable input (Shumway et al.,
1984). A discrete input choice rendering of the multi-output model was developed
in Negri and Brooks (1990) and is well suited for this investigation since it permits
both output and input substitution and discrete choice of inputs. Altering input and
output mix offers important adaptive strategies to climatic change. Producers can
adapt by altering production practices and applying inputs that mitigate the risk of
adverse climatic events. On the output side, multi-output producers can adapt to
exogenous climate conditions by altering the mix of crops.

Briefly summarizing the formal elements of the model, let Y be a vector of
agricultural commodity outputs and P a vector of exogenous output prices; X is a
vector of variable inputs (e.g., labor, water, fertilizer, energy, etc.) and W a vector
of exogenous input prices. Let T be a scalar representing the discrete choice of
irrigation capacity (i.e., on-farm investment in irrigation systems to supplement
natural precipitation) and ω, the lump-sum annualized capital cost of irrigation.
Let θ be a vector of exogenous physical characteristics including climate and soil
conditions that affect inputs and outputs.

In this approach, land is treated as a fixed input in the production of agricultural
outputs.2 Fixed land, profit maximization, competitive input and output markets and
well-defined production technology yield a well-defined indirect profit function for
the multi-output producer. Let the scalar N denote the quantity of fixed, allocatable
land on the farm. Assuming land is fixed and variable inputs are continuous, the
multicrop indirect profit function can be written as a function of output and variable
input prices and fixed input quantities (Chambers and Just, 1989).

�(P, W, ω, N ,θ) = max
X,T

{P′Y − W′X − ωT : Y ∈ Y (X,θ, N , T )}, (1)

where Y (X, θ, N , T ) is the restricted production possibilities set imposed by the
production technology and constraints on land, N , physical characteristics, θ, and
discrete irrigation capacity choice, T .

The decision to produce agricultural commodities using irrigation as opposed
to farming with natural precipitation only (i.e., dryland) is assumed to be discrete
and dichotomous; irrigation capacity is installed or it is not. Let TI and TD de-
note a production technology using irrigation and dryland production, respectively.
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Separate indirect profit functions associated with the discrete choice of irrigation
can be written as,

�I(P, W, ω, N ,θ) = max
X

{P′Y−W′X−ωTI: Y ∈Y(X,θ, N , TI)} (irrigated)

and, �D(P, W, N ,θ) = max
X

{P′Y−W′X: Y ∈ Y (X,θ, N , TD)} (dryland). (2)

Note that the indirect profit function for dryland does not include an irriga-
tion cost. The profit maximizing farm operator installs irrigation infrastructure
when the quasi-rent under irrigation exceeds the quasi-rent under dryland farming,
�I(P, W, ω, N ,θ) > �D(P, W, N ,θ).

Appending random error terms, representing unobserved variables that influence
profits under both dryland and irrigated regimes, to the profit functions in (2) yields
stochastic functions. Let εI and εD denote additive, random and independent errors
for irrigated and dryland farming, respectively. The farm operator now faces a
probabilistic choice and adopts irrigation when

�I(P, W, ω, N ,θ) + εI > �D (P, W, N ,θ) + εD. (3)

If we define PI as the probability of observing irrigation, T = TI, then we can then
write the probability of choosing irrigation as,

PI(T = TI |P, W, ω, N ,θ) = Prob [�I(P, W, ω, N ,θ)

−�D(P, W, N ,θ) > εD − εI]. (4)

To estimate the irrigation adoption probability in (4) we must choose a functional
form for the profit functions and probability distributions for the error terms. Let
the profit functions be represented by first-order Taylor series expansions,

�I(P, W, ω, N ,θ) + εI = βI0 + β ′
I1P + β ′

I2W + βI3 N + β ′
I4θ − βI5ω + εI

= β′Z − βI5ω + εI, and (5)

�D(P, W, N ,θ) + εD = βD0 + β′
D1P + β ′

D2W + βD3 N + β ′
D4θ + εD

= β ′Z + εD,

where the β’s are parameters of the indirect profit functions and Z is a vector of all
independent variables except the irrigation capital cost, ω. Combining Equations
(4) and (5) the probability of installing irrigation capacity is,

PI(T = TI|Z) = Prob [(βI0 − βD0 − βI5ω) + (βI − βD)′Z > εD − εI]. (6)

To estimate the model parameters, (βI −βD), using a probit model (Long, 1998)
let yi = 1 if the ith farm has irrigation capacity and zero otherwise, and let the
difference in errors assume a cumulative normal distribution, F.3 The probability
of irrigation, then, is

PI(T = TI|Z) = F[(βI − βD)′Z]. (7)
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If the observations are independent, the likelihood function for estimating the
parameters is,

L[(βI − βD)|T, Z] =
∏

y=1

F[(βI − βD)′Z]
∏

y=0

{1 − F[(βI − βD)′Z]}, (8)

where the product index indicates the products are taken only over those observa-
tions where y = 1 or y = 0.

This formal specification of irrigation adoption has the advantage of permit-
ting both input and output substitutions. Producers can respond to changing con-
ditions by adopting different technologies, altering the crop mix or letting land
lie fallow. However, the model does not capture the full range of adaptations to
climate change. Land is fixed, preventing agricultural land from expanding or
transferring to non-agricultural uses. Clearly, this is a drawback in terms of sim-
ulating a long-run climate change scenario. Nonetheless, the model and empiri-
cal specification described below capture the importance of climate extremes and
the production adaptations that are likely to occur in response to global climate
change.

3. Data and Empirical Application

We employ a probit model (Equation (8)) to estimate the probability of adopting
irrigation as a function of expected input prices, W, output prices, P, the total land
available, N , and a vector of physical characteristics that includes measures of cli-
matic variance. The empirical analysis combines survey-based data from individual
farm operations with spatially derived (GIS) climatic and soils information that is
also unique to each farm location. The climate and soils variables were constructed
by applying a GIS-based, non-parametric regression-smoothing technique to create
a virtual national “surface” for each variable (Whittaker and Scott, 1999).

In developing our geographic surfaces, the US is partitioned into 10-km2 cells.
To estimate the climate and soil values for each cell, we apply a non-parametric
kernel estimating technique developed specifically for spatial climate and weather
characterization described in Ali (1998).4 The resulting climatic and soils surfaces
overlaid the geo-referenced farm data, and the relevant variables from the climate
and soils surfaces were linked to each farm location. This method improves ac-
curacy of climate conditions relative to past studies using regional average data
(see Feather et al., 1999, for another application of this technique).

A brief example will help clarify the procedure. A non-parametric regression
procedure was used to develop a national maximum May temperature surface based
on monthly summaries from the 5700 weather stations. The maximum May tem-
perature data was then extracted from the surface at each of the 3087 farm locations
using the farm latitude and longitude data from the Agricultural Resource Man-
agement Survey (ARMS). This procedure allows each farm in the data set to have
unique climatic and soils data based on relative location to surrounding weather
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recording stations and soil survey locations. The appendix describes the data sources
and variable definitions in greater detail.

3.1. FARM DATA

Data for individual farm operations is based on the ARMS survey, which is USDA’s
primary data collection instrument for studying farm resource use (Economic Re-
search Service, 1996). The survey is comprised of several versions adapted to serve
different objectives, including commodity versions that collect resource use and
other on-farm information about production of specific commodities. We com-
bined the 1996 corn commodity survey with the 1997 soybean and cotton surveys
to form a cross-sectional database of 3087 observations. 5 The data cover the major
crop production areas for the three crops and include observations in 24 states with
greatest coverage in the southern and central portion of the nation. The ARMS
provides data for several variables critical to the analysis, including the dependent
variable identifying the use of irrigation as a production practice on the farm and
several independent variables relating to farm and producer characteristics. The lo-
cations of farms in the ARMS survey program are geo-referenced, providing the lat-
itude and longitude references necessary to match geo-referenced climatic and soils
variables.

3.2. CLIMATE DATA AND SPECIFICATION

The National Climatic Data Center (NCDC) collects US weather data that make
it possible to construct variables that capture climatic variance and the likelihood
of extreme events. The climate variables were constructed from variables included
in the NCDC, Summary of the Month data series6 (NCDC, 1997). The climatic
variables in the summary of the month series are based on 5700 geo-referenced
weather stations that maintained continuous daily temperature and precipitation
records for the 30-year period from 1966 to 1995. From those 30 years of monthly
summaries, we constructed several temperature and precipitation measures that
provide station-specific climatic variables.

Although monthly averages wash out daily extremes, the Summary of the Month
data series includes three variables that are effective measures for the tails of the tem-
perature and precipitation distributions and are highly correlated with the frequency
of extreme events. For temperature, the number of days in the month exceeding
90 ◦F captures the upper tail of the daily maximum temperature distribution. More-
over, days greater than 90 ◦F is a good approximation for the incidence of more
extreme heat since its correlation with even hotter events is greater than the mean.
For precipitation, Summary of the Month data include, in addition to total monthly
precipitation, two useful measures of the precipitation distribution – the number
of days in the month when precipitation exceeds 0.1 inch and the number of days
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when precipitation exceeds 1 inch. The first variable measures the frequency of
“effective” rainfall.7 Days with less than 0.1 inch of precipitation is a good approx-
imation for the duration and severity of drought conditions. Like “days greater than
90 degrees,” the “precipitation days greater than one inch” variable measures the
upper tail of precipitation distribution and is highly correlated with more excessive
precipitation.

In this study, we capture climatic variance by measuring the incidence of cli-
matic events in the upper tails of the climatic distributions using temperature and
precipitation thresholds available in published climate data (i.e., days greater than
90 ◦F and days greater than 1 inch of rainfall). While these thresholds capture the
variance of the climate distributions, they do not capture the risk and frequency
of more severe events in the extreme tails. To the extent that such extreme events
have a differential impact on production decisions, this data limitation constitutes
a shortcoming of this study. Data on the incidence of more extreme climatic events
would make it possible to discern the climate effects of events higher in climate
distributions using the approach developed here.

Multicollinearity was a concern in constructing the climate variables. Daily
mean maximum temperatures are correlated with both days exceeding 90 ◦F and
daily minimum temperatures. Total precipitation is correlated with days exceeding
1 inch and days exceeding 0.1 inch Moreover, temperature and precipitation are
themselves correlated. High levels of multicollinearity inflate the standard errors,
making it difficult to identify significant effects on individual variables. After some
experimentation, the final specification mitigated multicollinearity while preserving
measures of mean and extreme climate through suitable transformations of the
climate variables described below. Despite the multicollinearity, the results show
that climate variables associated with the upper tails of the climate distributions are
robustly significant.

Although temperature and precipitation have differential impacts on production
over the course of the growing season, the estimation could not support monthly
climate variables since correlation across months was excessive.8 Therefore, the
climate variables represent the conditions that prevail during the peak of the growing
season, June through August.9

The irrigation and land allocation decisions are made concurrently and prior
to the growing season based on the expected growing-season weather. The in-
dependent variables for temperature include: (a) the mean daily maximum tem-
perature for the growing season in ◦F, and (b) the total number of days over
the June-to-August growing period when the temperature exceeds 90 ◦F.10 Re-
cent evidence suggests that global warming may manifest in higher nighttime
temperatures (Rosenzweig et al., 2000). Thus, the specification also includes a
variable to reflect mean daily minimum temperatures. Since mean maximum and
minimum temperatures are highly correlated, to mitigate collinearity, this vari-
able is defined as the difference between the average maximum and minimum
temperature.
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Three variables capture the climatic precipitation conditions facing producers.
First, the variable approximating precipitation frequency is the number of days in the
June-to-August growing season when precipitation equaled or exceeded 0.1 inch.
The second variable corresponds to the mean of the precipitation probability dis-
tribution and is computed as the sum of growing-season precipitation (in inches)
divided by the number of days with more than 0.1 inch. The third variable, the share
of days in the growing season when precipitation exceeds 1 inch, is a proxy for heavy
rainfall events. It is computed as the number of days with at least 1 inch of precipi-
tation divided by the number of days with precipitation greater than 0.1 inch. Using
the share of days rather than the number of days reduced the collinearity with other
measures of climate. Note that days with precipitation exceeding 0.1 inch appears
in all three variables. When rainfall frequency increases, holding total rainfall con-
stant, the mean rainfall and the share of days with excessive rainfall both decrease.

We also included two interaction terms that were proposed in the literature –
a temperature–precipitation interaction and a precipitation–soil type interaction.
Dalton (1997) shows that the correlation between precipitation and temperature is
an important determinant of welfare effects of climate on agriculture. High tem-
peratures can be either harmful or beneficial to yield depending on the availability
of soil moisture (Runge, 1968). High temperatures with ample soil moisture can
boost yields, while heat in the absence of precipitation can reduce yields. The
temperature–precipitation interaction term is defined as the total growing season
precipitation times the mean maximum temperature. There is also an important
interaction between precipitation and soil type (Mearns et al., 1996). Soil char-
acteristics determine the water-intake rate through the soil profile and the ability
of soil to retain moisture. The soil–precipitation interaction term is defined as the
growing season precipitation times a measure of the topsoil permeability rate.

3.3. PRICES AND WATER AVAILABILITY

Commodity prices were omitted from the analysis because cross-sectional varia-
tions in crop prices were, by and large, trivial. Prices for most crop commodities
reflect national markets, with transportation costs driving any regional differences.
Input prices for farm labor, energy, and nitrogen fertilizer exhibited sufficient re-
gional variation to be included in the analysis. With the exception of irrigation water
price, theory does not dictate the signs of the input and output price variables.

The price of water is an important determinant of irrigation adoption. However,
creating a good proxy for the marginal opportunity cost of water is problematic for
two reasons. First, although the ARMS survey solicited water cost from respondents,
it did so only for irrigated farms, not for non-irrigators. Second, several empirical
articles in the literature confirm that surface water is not a price-rationed commodity
(Moore and Dinar, 1995; Economic Research Service, 2003; Kanazawa, 1993). In-
stitutionally based quantity constraints, historical practice and long-term subsidized
contracts govern the allocation of surface water, not prices and markets. States or
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federal agencies administer water rights and set fees without regard to the relative
scarcity of water. This institutional setting implies that on-farm water costs do not
reflect the opportunity cost of water nor do water costs govern farmer behavior at
the margin. Thus, we opted for a variable that would proxy for the availability of
supplemental water.

Because surface water is not price-rationed and groundwater constitutes the
primary source of incremental water, we employed a proxy for the availability of
groundwater to the farmer. Where groundwater was readily accessible, the shadow
price of water would be low compared to areas where groundwater was scarce.
From the USGS data (Solley et al., 1998) we constructed a variable defined as the
share of total agricultural water in the county derived from groundwater sources.
A large groundwater share would indicate the availability of supplemental water
and, thus, a lower shadow price. A small share, on the other hand, would indicate
the scarcity of marginal water supplies and a higher shadow price.

Finally, note that, in a model that incorporates climate, water price should be
endogenous since temperature and precipitation simultaneously affect irrigation
demand and fresh water supplies. The estimation of a simultaneous model, however,
is beyond the scope of this paper because, without a surface water component, the
groundwater share variable is not a good candidate for an instrumental variable
approach. Potential simultaneity biases will be addressed in Section 4.

3.4. SOILS AND OTHER DATA

The soil variables are based on cropland soils and topography information contained
in the National Resources Inventory (NRI) (Natural Resource Conservation Service,
1999) and state soil survey data. The 800,000 NRI sample points are digitized into
a geo-referenced database. The NRI data points link to the soil characteristic data
in the STATSGO soil database (Natural Resource Conservation Service, 1995).

Regional dummy variables were also added to capture non-climatic differences
in irrigation adoption, such as water laws, institutions, and supporting infrastruc-
ture. Four regions were developed based on state boundaries. The east–west line
separates the 17 western states where irrigation acreage is concentrated and irriga-
tion institutions are well established. The north–south line was defined somewhat
arbitrarily, with the southern region stretching from Virginia through Tennessee
to Arizona and California. The division does distinguish the fast-growing areas of
irrigation in the south from areas in the Corn Belt and Lake States where irrigation
is not as common. More detailed definitions of the variables are in the appendix.

4. Model Results

The likelihood function in Equation (8) was estimated using a maximum likelihood
procedure in LIMDEP (Greene, 1998). The estimation included expansion weights
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TABLE I
Descriptive statistics and binomial probit estimates

Sample NW Standard
Category Variable means means Coefficient error b/SE

Irrigation irrigation dummy 0.114 0.3 dependent NA NA

Region Intercept 1.00 1.00 4.88 5.18 0.94

farmsize Northwest dummy 0.14 1.00 0.038 0.324 0.12

and prices Northeast dummy 0.72 0.00 −0.73 0.364 −1.99

Southeast dummy 0.10 0.00 0.522 0.259 2.02

Total acres 641.1 1029.6 1.112E-04 4.04E-05 2.75

Irrigation energy price 0.08 0.01 1.064 6.34 0.17

Nitrogen fertilizer price 685.0 98.35 −5.613E-04 2.20E-03 −0.26

Labor wages 6.72 7.06 0.286 0.147 1.94

Water County
availability groundwater share 0.67 0.73 0.795 0.127 6.25

Precipitation Days > 0.1 inch 18.77 16.91 0.037 0.062 0.60

variables Share > 1.0 inch 0.17 0.18 −7.19 2.34 −3.07

Mean precipitation 0.63 0.63 0.121 1.76 0.07

Interaction Precip*Permeability 1.61 1.38 0.0063 0.015 0.42

terms Precipitation*Temp 988.4 913.0 −0.0011 0.001 −1.00

Temperature Mean Max Temp 84.3 85.94 −0.087 0.059 −1.49

variables Days > 90 23.90 32.33 0.043 0.012 3.53

(Max − Min) Temp 11.46 12.37 0.072 0.064 1.120

Soil Soil slope 3.43 3.11 −0.12 0.024 −4.85

variables Clay dummy 0.68 0.73 −0.63 0.091 −6.85

Sand dummy 0.04 0.001 −0.57 0.189 −3.04

Farm and Operator age 51.7 50.1 −0.015 0.003 −5.03

demographic Op college dummy 0.15 0.18 0.205 0.098 2.10

variables Farm primary Occ 0.73 0.80 0.428 0.107 3.98

> $10K Livestock 0.30 0.41 0.081 0.086 0.950
inventory

aComplete variable definitions are in the appendix. Probit estimates are distributed asymptotically
normal (Long, 1998).

provided with the ARMS data that generate estimates that are representative of
US corn, soybean, and cotton farmers. The model correctly predicts the actual
outcome – the presence or absence of irrigation – in 86.6% of the observations.

Table I shows, in the first two columns, the variable names and a brief de-
scription. Columns 3 and 4 show sample means for the entire sample and the
sub-sample of farms in the northwest (states are defined in the appendix). North-
west regional means will be used to simulate changes in the temperature and
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precipitation distributions in Section 5.11 The last three columns of Table I show
maximum likelihood parameter estimates, standard errors, and t-ratios. With large
samples, as is the case here, maximum likelihood estimators are distributed asymp-
totically normal (Long, 1998).

4.1. CLIMATIC VARIABLES

As Table I shows, the temperature and precipitation distribution effects are cap-
tured in eight independent variables. Examining the signs and significance of indi-
vidual climate coefficients is incompatible with this approach since the estimation
includes variables that simultaneously capture the means and tails of the distribu-
tions, interactions between temperature and precipitation, and interactions between
soil permeability and precipitation. For example, a change in the mean tempera-
ture that shifts the temperature distribution toward higher temperatures affects four
variables – mean maximum temperature, days greater than 90 ◦F, day–night tem-
perature difference, and the temperature–precipitation interaction. Increasing the
mean maximum temperature without increasing the days exceeding 90 ◦F is equiv-
alent to decreasing the temperature variance to hold the upper tail of the distribution
constant. Rather than report marginal effects at the means of the independent vari-
ables, it is more instructive to compute changes in the predicted probabilities for
plausible climate change scenarios. The next section illustrates the impact of six
climate change scenarios on irrigation adoption probabilities. Each scenario com-
putes the change in predicted probability for a hypothetical shift in the climate
distributions.

A few general observations are worth nothing at this juncture. First, the two vari-
ables that capture the upper tails of the temperature and precipitation distributions,
“share of days in excess of one inch of rain” and “days greater than 90 degrees,”
were highly significant, but were the only significant climate variables. This result
and the scenarios in the next section will show that changes in the climate means
without shifting the corresponding distributions does not significantly impact ir-
rigation adoption. The upper tails of the distributions dominate the determination
of irrigation probabilities. Second, although several climate coefficients were in-
significant, separate likelihood ratio tests of the joint significance of precipitation
variables, temperature variables and interaction terms, rejected the hypothesis that
the coefficients were jointly equal to zero. Finally, the sign on the difference be-
tween daytime and nighttime temperatures is positive, though not quite significant
at the 10% level. Nonetheless, it is worthwhile to provide a plausible interpre-
tation for the positive relationship. Day–night temperature difference is a good
proxy for humidity. Humid areas have a smaller day–night temperature difference
than non-humid areas. The positive sign suggests that areas with low humidity
(i.e., large difference between mean high and low temperatures) are more likely to
irrigate.
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4.2. WATER AVAILABILITY

Even though the share of total agricultural water derived from ground water sources
is only a rough proxy for water availability and price, the proxy variable is positive
and highly significant. It is no surprise the availability of water plays such a key role
in determining irrigation adoption. Indeed, the ability of producers to use irrigation
as a climate adaptation will be significantly constrained by water availability. Public
policies that promote more efficient water allocation could facilitate irrigation as
an adaptive measure to climate change.

As we noted earlier, we estimated the probit model treating water availability
as exogenous. To the extent that the climate variables are correlated with the water
price, or its groundwater share proxy, they are subject to simultaneity bias. The
simultaneity and expected correlations between temperature, precipitation and wa-
ter price suggest that the model may overestimate climate effects. For example,
the negative impact of higher precipitation on irrigation adoption may be partially
offset by lower water prices as increased rainfall augments water supplies.

4.3. NON-CLIMATE VARIABLES

Soil and slope variables were generally significant, with the expected signs. The
variable for soil slope is negative and highly significant. That is, greater soil slope
decreases the probability of irrigation since high irrigation efficiencies require uni-
form soil moisture. Where soil slope is excessive, irrigation results in uneven mois-
ture penetration – with insufficient penetration at the head of the field and excess
water runoff at the base. The problem is most critical for gravity-flow systems, but
is also a concern for pressurized distribution systems.

The soil content results suggest that irrigation is less likely to occur on ‘ex-
treme’ soil categories and most likely to be adopted on medium-grained, loamy
soils. These results are consistent with other empirical studies (see, for example,
Negri and Brooks, 1990) showing the major role that soil characteristics play in
determining irrigation and irrigation technology. The dummy variable indicating
the presence of high clay content is negatively related to the probability of irriga-
tion and is highly significant. The greater the clay content of the soil, the lower
the probability of irrigation, since clay soils retain more soil moisture, and irri-
gation on soils with slow water penetration impose additional challenges. At the
other extreme of soil permeability, soils high in sand content also significantly
decrease irrigation probabilities. While heavier clay soils lessen the need for irriga-
tion, irrigation efficiencies are often lower or capital requirements significantly in-
creased on high-intake sandy soils – increasing irrigation requirements to meet crop
needs.

The variable for total farm acres was positive and significant at the 1% level,
suggesting that large farms are more likely to irrigate. This finding is consistent with
intuition and is well documented in the literature (Natural Agricultural Statistics
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Service, 1999). Larger farms are more highly capitalized, and thus, are more readily
able to assume the high up-front capital costs of irrigation system adoption.

The positive and marginally significant coefficient on wages suggests that labor
and irrigation are substitute inputs. The prices of irrigation energy per foot of lift and
nitrogen fertilizer price were insignificant in the model. The failure of these price
variables to have explanatory power may be attributable to the fact that geographic
variation in energy and fertilizer costs were not sufficient to capture price effects.12

Regional dummies were specified to capture structural differences in the agri-
cultural sector that are independent of climate, such as water laws and institutions,
regional input and output markets and regional production history. The results
show that the northeast dummy is negative and significant at the 10% level while
the southeast and northwest dummies are both insignificant.

With the exception of the dummy variable indicating a major livestock pro-
duction enterprise on the farm, demographic variables were robust and consistent
with expectations. Irrigation requires more capital investment, more expertise, and
more management. The variable for operator age was negative and highly signifi-
cant. Younger operators tend to be more likely to adopt irrigation technology. The
dummy variable indicating the farm operator attended college was positive and
highly significant. Irrigation requires increased management skills, and education
is a good proxy for management capacity. The dummy variable indicating that farm-
ing was the operator’s primary occupation was positive and significant. Part-time
farmers are less likely to incur the capital costs and management demands of an ir-
rigated production system. Finally, the dummy variable for farms with greater than
$10,000 in livestock inventory distinguishes producers who are predominately crop
farmers from those who also have significant livestock enterprises. This variable
was not significantly different from zero.

5. Simulating Alternative Climatic Conditions

The estimated model can be used to simulate the impact of changes in the probability
distributions of both temperature and precipitation on the likelihood of on-farm
irrigation. Assuming daily maximum temperature takes on a normal distribu-
tion (Katz and Brown, 1992) and precipitation takes on a Weibull distribution
(Duan et al., 1988), measures of the upper tail of the precipitation and temperature
distribution can be used to calibrate the temperature and precipitation distribu-
tions. The probability of temperature exceeding 90 ◦F can be approximated by the
share of days in the period exceeding 90 ◦F. For example, at the global means
of the sample data (see Table I), the mean maximum temperature in the June-to-
August growing season is 84.27 and the number of days exceeding 90 ◦F is 23.9.
The daily temperature variance can be constructed by assuming temperature is
normally distributed and calculating the variance implied by the upper-tail prob-
ability (Figure 1). In this example, the probability that daily temperature exceeds
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Figure 1. Maximum temperature distribution at sample mean.

90 ◦F is 0.26 (23.9 days greater than 90 ◦F divided by 92 days in the growing-
season period). The implied standard deviation for the normal distribution is
8.90.

Armed with a parameterization of the temperature distribution and esti-
mates of the impact of climate means and extremes on irrigation adoption,
the model can simulate the independent effects of the first two moments of
the distribution – changes in the mean holding variance constant and changes in
the variance holding mean constant. Note that increasing the mean, holding vari-
ance constant, shifts the entire distribution toward warmer temperatures, thereby
increasing the frequency of extreme temperatures. Using the distribution in Figure
1, a 3 ◦F increase in mean temperature, holding variance constant, increases the
growing-season days exceeding 90 ◦F by 11.0 days, from 23.9 to 34.9.

The model can similarly be used to examine the independent effects of changes
in the mean and frequency of precipitation and the shape of the distribution. Fol-
lowing the temperature distribution example, we assumed a two-parameter Weibull
distribution for precipitation (Duan et al., 1988) and estimated its parameters using
mean rainfall and the share of days exceeding 1 inch as an estimate of the probabil-
ity in the upper tail.13 At the global means of the sample data, there are 18.8 days
of rainfall greater than 0.1 inch in the June-to-August period. The “mean” rainfall,
0.63 inch, is calculated as the average of total precipitation in the period divided
by the number of days where rainfall exceeds 0.1 inch of the 18.8 days greater
than 0.1 inch, 17% or 3.2 days exceed 1 inch of precipitation. Figure 2 shows
the inverse of the cumulative distribution function14 implied by the mean and
upper tail at the global sample mean.
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Figure 2. Weibull distribution of precipitation.

An increase in total rainfall, holding the frequency of rainfall constant, will shift
the entire distribution to the right, increasing the frequency of extreme rainfall. An
increase in rainfall frequency, holding total rainfall constant (i.e., more days with
less rain per day), will shift the entire rainfall distribution to the left, reducing mean
and extreme precipitation. Changing the shape parameter of the Weibull distribution
alters the rainfall distribution, shifting the distribution between light and heavy rain,
holding total rainfall and frequency constant. The model can predict the impact on
the dependent variable of all of these perturbations.

Since the change in the irrigation probability for a given change in the inde-
pendent variables depends on the levels of all independent variables, the scenarios
evaluate the irrigation probabilities at the sample mean values for the northwest,
one of the four geographic regions. Table I shows the sample mean values for the
independent variables in the northwest. At the northwest sample means, the model
predicts the probability of irrigation is 0.25. The six scenarios report the change
in irrigation probabilities compared to the predicted probability at the northwest
sample means.

5.1. SCENARIO 1: INCREASE IN TOTAL PRECIPITATION, HOLDING FREQUENCY

CONSTANT

In Scenario 1, the total precipitation increases 10%, or 1.06 inch, holding precip-
itation frequency constant. Figure 3 shows how a 10% increase in precipitation
shifts the distribution to the right, increasing mean rainfall from 0.63 to 0.69 and
the frequency of precipitation greater than 1 inch from 3.13 to 3.44 days in the
June-to-August growing season. The model predicts a 0.066 decrease in irrigation
probability compared to the base case since increased soil moisture reduces the
need for irrigation. The result is consistent with the expectation that more rainfall
reduces the need for irrigation.
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Figure 3. Total rainfall increases 10% or 1.06 inch
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Figure 4. Rainfall frequency increases 1.69 days or 10%.

5.2. SCENARIO 2: INCREASE IN PRECIPITATION FREQUENCY, HOLDING TOTAL

RAINFALL CONSTANT

Scenario 2 demonstrates that the relationship between irrigation and precipita-
tion is complex and multidimensional. Figure 4 shows a 10%, or 1.69 days, in-
crease in the frequency of rainfall in excess of 0.1 inch, holding the total rainfall
constant. In this scenario, the same amount of rainfall is spread over 1.69 more
days, shifting the entire probability distribution to the left. The mean rainfall de-
clines from 0.63 to 0.57 inch in the June-to-August growing period and the days
greater than 1 inch also falls from 3.13 to 2.84. The model predicts a 0.10 in-
crease in irrigation probability. It follows that an increase in the number of days of
rainfall, holding total precipitation constant, increases the likelihood of irrigation
since less effective rainfall is available for crop development. The same amount of
precipitation delivered over more days reduces the moisture available for growth
as more moisture evaporates before infiltrating the soil. Scenario 2 underscores
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Figure 5. Skew distribution toward heavier rainfall holding total and frequency constant.

the importance of the daily distribution of rainfall, independent of the total
precipitation.

5.3. SCENARIO 3: SKEW THE PRECIPITATION DISTRIBUTION TOWARD HEAVY

RAINFALL, HOLDING FREQUENCY AND TOTAL RAINFALL CONSTANT

Figure 5 skews the precipitation distribution toward more heavy rainfall holding
total precipitation and frequency constant. Skewing the distribution increases the
occurrence of large rainfalls while decreasing the occurrence of low rainfalls so as
to hold total rainfall constant. The mean remains constant at 0.63 inch while the
number of days in excess of 1 inch increases 1 day from 3.13 to 3.98. The model
predicts a substantial decline of 0.10 in irrigation probability, as more of the rainfall
is available for plant growth. Light rainfall events provide relatively little effective
moisture to the plant, as much of this is lost to evaporation on the plant and soil
surface. Heavier rainfall events permit moisture saturation of the crop root zone,
reducing the need for irrigation.

The first three scenarios underscore the importance of considering the entire pre-
cipitation distribution in models of agricultural production. Scenario 3 establishes
the upper tail of the precipitation distribution as a driving force in irrigation adop-
tion since the change in irrigation probability was substantial with no corresponding
change in total rainfall or rainfall frequency.15

5.4. SCENARIO 4: MEAN DAILY MAXIMUM TEMPERATURE INCREASES 3 ◦F,
HOLDING VARIANCE CONSTANT

Figure 6 shows the mean daily maximum temperature increasing 3 degrees to
simulate global warming. This scenario holds the variance constant and increases
the mean of the temperature distribution from 85.94 to 88.94. Since the mean
temperature was relatively high to begin with, the number of days exceeding 90 ◦F
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Figure 6. Maximum temperature distribution increases 3 ◦F.

increases by 10 days, from 32.3 to 42.3. The model predicts a 0.12 increase in the
irrigation probability for a 3 ◦F shift in the temperature distribution.

It is noteworthy that the large increase in the number of days exceeding 90 ◦F
derives from the concentration of probability in the neighborhood of the mean.
When the 90 ◦F threshold is close to the mean, as it is here, its ability to proxy for
temperature events in the upper tail of the distribution is significantly diminished.
When maximum temperatures are already high, thresholds higher than 90 ◦F would
be more effective in capturing the effects of the temperature distribution.

A modified Scenario 4 illustrates that the driving force behind the temperature
effect on irrigation is the upper tail of the temperature distribution, not the mean.
Consider a scenario in which we increase the mean temperature and simultaneously
decrease the variance so as to hold the upper tail of the temperature distribution un-
changed. In other words, the mean increases without increasing the number of 90 ◦F
days. In this hypothetical example, we get the counterintuitive result that irrigation
probability marginally declines.16 Although the small decline in probability may be
an artifact of the multicollinearity, model, or estimation, it reveals the dominance
of the upper tail in determining irrigation. The effect of the 90 ◦F days on irrigation
adoption overwhelms the small and negative mean temperature effect producing an
increase in irrigation corresponding to an increase in temperature.

5.5. SCENARIO 5: INCREASE IN DAILY MAXIMUM TEMPERATURE STANDARD

DEVIATION BY 1.06 OR 10%, HOLDING THE MEAN CONSTANT

In Scenario 5 (Figure 7), we hold mean temperature constant and increase the
standard deviation by 1.06 ◦F (10%), from 10.64 to 11.7. Days greater than 90 ◦F
increases only 1.2 days, from 32.3 to 33.5. The reason for the small increase in the
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Figure 7. Increase variance of maximum temperature distribution 10% or 1.06 ◦F.

number of days greater than 90 ◦F is the same problem we encountered in Scenario
4 – the mean is already too close to the 90 ◦F threshold. Under these circumstances,
increasing the variance will, on the one hand, substantially increase the probability
of extreme events and, on the other, not appreciably affect the probability of days
in excess of the 90 ◦F threshold. With a high temperature mean, the 90◦F threshold
will not adequately capture the irrigation effects of the climatic events in the upper
tail. Despite the limitations of the data on temperature, the model predicts a 0.02
increase in irrigation probability. The effect is undoubtedly larger.

5.6. SCENARIO 6: SIMULTANEOUSLY INCREASE MEAN DAILY MAXIMUM

TEMPERATURE 3 ◦F AND DECREASE TOTAL PRECIPITATION 1.06 INCHES

OR 10%

Scenario 6 increases mean maximum temperature 3 ◦F while simultaneously de-
creasing total precipitation 1.06 inch or 10%. This scenario illustrates the consid-
erable interactive impact of precipitation and temperature. The model predicts a
substantial 0.22 increase in the irrigation probability, 5.6% greater than the inde-
pendent impacts. This scenario predicts a near doubling of the number of irrigated
farms in the northwest region. The combination of temperature warming and declin-
ing rainfall underscores the potential risk that climate change poses to agriculture,
the potential demands climate change places on irrigation, and the importance of
modeling the temperature-precipitation interaction.

6. Conclusions

This paper develops a discrete choice model and related variables that capture the
effects of both climate means and extremes on the decision to adopt irrigation.
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Climatic means and frequencies of climatic events in the upper tails of the tempera-
ture and precipitation distributions are used to calibrate the parameters of a normal
distribution for temperature and a Weibull distribution for precipitation. Using esti-
mates from a probit model and the parameterized climate distributions, we examine
the independent effects of climatic mean and variance on the probability of adopt-
ing irrigation. This framework for incorporating the distributions of rainfall and
temperature into an empirical economic model of agricultural production can be
applied more generally to examine the impact of climate variability and climate
change on other agricultural inputs and outputs.

The results show that agricultural adaptation to changing climatic conditions will
depend considerably on how climate change affects the distributions of temperature
and precipitation. It is no surprise that higher temperatures and less rainfall increase
irrigation. What is significant here is that the empirical results show extreme climatic
events and biophysical interactions play a crucial role in the decision to adopt
irrigation. The tails of the temperature and precipitation distributions are dominant
explanatory forces in irrigation and are likely to be important determinants in other
production decisions.

Beyond the climatic impacts, the results also show that the ability to employ
irrigation as an adaptation to climate change is constrained by water availability,
farm size, soil conditions and even operator demographics. As expected, water
availability is a primary determinant of presence of irrigation capacity.

Finally, this analysis does not capture the full range of climatic adaptations. In
particular, the model holds total land fixed, preventing the long-run transfer of land
into or out of agriculture. Moreover, water availability and price should be treated as
endogenous as climate simultaneously affects irrigation demand and water supply.
Future empirical research on the agricultural impacts of climate change should
treat agricultural land and water as endogenous and capture the impact of climate
extremes by incorporating measures of the tails of the temperature and precipitation
distributions.
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Appendix: Variable Definitions and Data Sources

DEPENDENT VARIABLE

Irrigation is a binary variable on the occurrence of irrigation on the farm in the
survey year. It is 1 if irrigation occurred and 0 otherwise, based on the Agricultural
Resource Management Survey (ARMS) (Eeconomic Research Service, 1996).

CLIMATIC VARIABLES

Days > 0.1 inch is the number of days in a June-to-August growing season with
precipitation totaling 0.1 inch or more. We refer to this as “the days of rainfall”
or “rainfall days” even though we do not account for days with only a “trace” of
rain.

Share >1.0 inch is the share of days in a June-to-August growing season when
precipitation exceeds 1 inch It is computed as the number of days with at least
1 inch of precipitation divided by the number of days with precipitation greater
than 0.1 inch. It serves as a measure of rainfall intensity.

Mean Precipitation represents the mean precipitation event in the June-to-
August growing season in inches. It is computed as the sum of growing season
precipitation divided by the number of days with precipitation greater than 0.1 inch

Precip∗Permeability is a multiplicative interaction term computed as the sum of
June-to-August precipitation (in inches) times soil permeability. Soil permeability
is expressed as the average of the maximum and minimum topsoil permeability
rate (inches per hour) as reported in the STATSGO soil database (Natural Resource
Conservation Service, 1995).

Precipitation∗Temp is a multiplicative interaction term computed as the sum of
June-to-August growing season precipitation (in inches) times the average maxi-
mum monthly temperature over the same period (◦F).

Mean Max Temp is the average maximum monthly temperature over the
June-to-August growing season (◦F).

Days > 90 is the total number of days over the June-to-August period when the
temperature exceeds 90 ◦F.

(Max − Min) Temp is the difference between the average maximum monthly
temperature and the average minimum monthly temperature over the June-to-
August period (◦F). It serves as a measure of nighttime cooling which is highly
correlated with humidity.

REGIONAL DUMMIES

Northeast is a regional dummy that is 1 if the observation is in the Lake States,
Corn Belt or northeast regions, and 0 otherwise.
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Northwest is a regional dummy that is 1 if the observation is in the Northern
Plains (ND, SD, NE, KS), Northern Mountain (ID, MT, WY, NV, UT, CO), or
Northern Pacific (WA, OR) regions, and 0 otherwise.

Southwest is a regional dummy that is 1 if the observation is in the Southern
Plains (OK, TX), Southern Mountain (AZ, NM), or Southern Pacific (CA) regions,
and 0 otherwise. The omitted dummy in the specification.

Southeast is a regional dummy that is 1 if the observation is in the Delta States
(AR, LA, MS), Southeast (AL, GA, SC, FL), or Appalachian (TN, NC, KY, VA,
WV) regions, and 0 otherwise.

FARM AND FARMER CHARACTERISTICS

Total Acres is the total acres operated on the farm based on the ARMS survey
(Economic Research Service, 1996).

Soil Slope is expressed as the average of the maximum and minimum slope (%),
as reported in the STATSGO soil database (NRCS, 1995).

Clay Dummy is a binary variable that is 1 if the surface texture of the soil is rated
as “clay like” and 0 otherwise. It includes six soil textures in the STATSGO soil-
texture rating scale from sandy clay loam to clay (Natural Research Conservation
Service, 1995).

Sand Dummy is a binary variable that is 1 if the surface texture of the soil is rated
as “sandy” and 0 otherwise. It includes six soil textures in the STATSGO soil-texture
rating scale from coarse sand to loamy sand (Natural Research Conservation
Service, 1995).

Operator Age is the age of the principal farm operator in years, from the ARMS
(Economic Research Service, 1996).

Op College Dummy is a binary variable representing the formal education level
of the primary operator, 1 if attended or graduated from college and 0 if formal
education stopped at or before completion of high school as recorded by the ARMS
(Economic Research Service, 1996).

Farm Primary Occ is a binary variable representing the primary occupation
of the principal farm operator, 1 if a full-time farm operator and 0 if a part-time
operator as recorded by the ARMS (Economic Research Service, 1996).

>$10K Livestock Inventory is a binary variable that is 1 if the farm had more than
$10,000 in current livestock inventory at the time of the survey and 0 otherwise, as
recorded by the ARMS (Economic Research Services, 1996).

INPUT PRICES

Groundwater Share is the county share of freshwater irrigation withdrawals from
groundwater relative to the total county freshwater irrigation withdrawals in 1995
(Solley et al., 1998).
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Irrigation Energy Price represents the unit energy cost of providing irrigation
water. This variable is based on energy costs for pumping (dollars per acre-foot of
lift). Irrigation energy costs were computed at the state level, using price-updated
data from the Farm and Ranch Irrigation Survey (Bureau of the Census,
1996).

Nitrogen Fertilizer Price represents the unit cost of nitrogen fertilizer (dollars
per ton for ammonium nitrate (National Agricultural Statistics Service, 1998a))
for a region.

Agricultural Labor Wage is the hourly field-labor wage rate (National
Agricultural Statistics Service, 1997, National Agricultural Statistics Service
1998b).

Notes

1See Schimmelpfennig (1996) for a survey of a few other studies that incorporate some degree of
climatic variance.

2In the intermediate run, land is often available in fixed amounts.
3The adoption probability can also be estimated using a logistic model. Long (1998) details the

differences in the two approaches.
4Ali (1998) defines bandwidth as the radius defining the boundary for inclusion of weather station

data in estimation of the cell values. In estimating climate and soil variables for each cell, bandwidth is
a function of the density of stations in the neighborhood of the geographic cell and is constructed such
that the estimate includes at least four weather stations. The largest bandwidth used in the construction
of the surfaces is 95 km or about 60 miles.

5This study relies on the whole-farm data collected in Phase III of the survey to determine if
irrigation was used anywhere on the farm. See Economic Research Service (1996) for details on the
differences in alternative phases of the survey.

6The Southern Regional Climate Center, Baton Rouge LA, processed 30 years of monthly data
into climatic averages for each weather station.

7We assume that days of rainfall less than 0.1 inch do not contribute enough soil moisture to affect
irrigation decisions.

8To an extent climate in distinct periods of the growing season or outside the growing season
differentially impacts the irrigation decision, omitting these variables constitutes a source of bias.

9In several preliminary estimations, we included a preseason rainfall variable because it may
influence the irrigation decision by contributing to soil moisture early in the growing season. The
inclusion of preseason rainfall did not substantively alter the results.

10Temperature thresholds greater than 90 ◦F are not readily available. A higher temperature thresh-
old would more accurately capture the upper tail of the temperature distribution. The 90 ◦F temperature
level is approaching critical threshold temperature levels for plant development due to heat stress as
reported in Rosenzweig, et al. (2000).

11Dummy variables for region require region-specific simulations. We chose the northwest region
because it illustrated both the strengths and weaknesses of this approach.

12Although not significant, the negative coefficient on nitrogen fertilizer suggests it may be a
complementary irrigation input. The complementary use of irrigation and fertilizer is plausible because
the higher yields associated with irrigation require greater nutrient inputs, especially nitrogen. If
irrigation is an important adaptation strategy to climate change, it may entail added green house gas
emissions from increased fertilizer use.
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13The Weibull cumulative density function employed here is F(x) = 1 − e−[ kx
λ ]c

, where x is daily
precipitation, λ = E(X ) the expected value of daily precipitation, k = �

(
1 + 1

c

)
, where c is the

shape parameter and � is the Gamma function. Duan et al., (1988) estimate parameters of the Weibull
distribution for precipitation k = 1.191 and c = 0.75. We calibrate the Weibull distribution such
that the probability of precipitation greater than 1 inch equals the sample probability (k = 1.5 and
c = 0.60).

14Figure 2 shows the inverse of the cumulative distribution function, 1−F(x), where F(x) represents
the probability of events less than x.

15Rainfall in excess of 1 inch may not capture the irrigation effects of precipitation events higher in
the tail, as in the case of torrential rains. The point at which runoff dominates infiltration is a function
of permeability, slope texture, state of crop growth and rain intensity. This underscores the complexity
of the relationship between production and biophysical conditions.

16One would still expect a modest increase in irrigation probability as the skewed tempera-
ture distribution would still have a warmer average. But, obviously, the model cannot capture that
subtlety.
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